Relation between quantum tunneling times for relativistic particles
نویسندگان
چکیده
The time it takes for a particle or wave packet to tunnel through a potential barrier has been debated for decades [1–8]. The fact that there is a finite duration for the tunneling process is not in doubt. The debate centers around the validity of the various proposed tunneling times, the relation between those times, and the physical meaning of a tunneling time especially when it predicts apparent superluminal velocities. Two of the more commonly used tunneling times are the dwell time (defined through the integrated probability density under the barrier) and the phase time (defined by the energy derivative of the transmission phase shift). These two times, however, are not entirely unrelated. They are equal under certain circumstances but generally differ as a result of quantum interference effects [9–11]. Both times also saturate with increasing barrier length, a phenomenon known as the Hartman effect [2] and which has been claimed to lead to infinite tunneling velocities for opaque barriers [6]. This effect has recently been explained as arising from the saturation of stored energy or number of particles under the barrier [11–13]. With some exceptions [14–23], most discussions of quantum tunneling time have been based on the nonrelativistic Schrödinger equation even when apparent “faster than c” effects are considered. In particular there has been no discussion of the relation between the various tunneling times for relativistic particles. Here we derive an exact relation between the phase time and the dwell time for relativistic particles that satisfy the Dirac equation. We show by means of an explicit stationary state calculation that the phase time is equal to the dwell time plus a self-interference delay which is a relativistic generalization of earlier results. II. RELATIVISTIC ONE-DIMENSIONAL SCATTERING RELATIONS
منابع مشابه
Superluminal Tunneling of a Relativistic Half-Integer Spin Particle through a Potential Barrier
This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneli...
متن کاملQUANTUM TUNNELING IN MEDIUMS WITH LINEAR AND NONLINEAR DISSIPATION
We have applied the method of integration of the Heisenberg equation of motion proposed by Bender and Dunne, and M. Kamella and M. Razavy to the potential V(q) = v q - µ q with linear and nonlinear dissipation. We concentrate our calculations on the evolution of basis set of Weyl Ordered Operators and calculate the mean position , velocity , the commutation relation [q, p], and the energ...
متن کاملDelay time and the hartman effect in quantum tunneling.
A general relation between the group delay and the dwell time is derived for quantum tunneling. It is shown that the group delay is equal to the dwell time plus a self-interference delay. The Hartman effect in quantum tunneling is explained on the basis of saturation of the integrated probability density (or number of particles) under the barrier.
متن کاملQuantum Tunneling of Magnetization in Single Domain CoFe2O4 Particles
We systematically investigated the macroscopic quantum tunneling (MQT) phenomena of magnetization in CoFe,O, particles with a diameter ranging from 30 to 92 A in zero extemal magnetic field to remove the substantial influence of energy dissipation. For all of our samples, we observed the MQT phenomena in zero external magnetic field, in spite of the anticipation that a large magnetic field H co...
متن کاملOn the Absence of the Zeno Effect in Relativistic Quantum Field Theory
We study the time evolution of decaying particles in renormalizable models of Relativistic Quantum Field Theory. Significant differences between the latter and Non Relativistic QuantumMechanics are found —in particular, the Zeno effect seems to be absent in such RQFT models. Conventional renormalization yields finite time behaviour in some cases but fails to produce finite survival probabilitie...
متن کامل